

Toward Understanding Spacecraft Autonomy Computing Needs

Seung H. Chung and Lorraine M. Fesq Jet Propulsion Laboratory, California Institute of Technology.

Fault-Tolerant Spaceborne Computing Employing New Technologies

Working Group: Applications

Sandia National Laboratories Albuquerque, NM May 30, 2017

The Need for Autonomy

Autonomy enables pioneering missions:

- Explore new destinations and increase science yield, robustness, operability

What is Autonomy?

Autonomy: To make decisions and take actions, in the presence of uncertainty, to execute the mission and respond to internal and external changes without human intervention.

Hardware

- Sensing and perception
- Computing
- *System architecture*

Software

- Autonomy algorithms
- Autonomy architecture and infrastructure

Systems Engineering

- System design
- Verification and validation
- Operations

Layers and Spectrum of Autonomy

Higher Level

wer Level

Intent Recognition and Management

Task & Resource Planning & Scheduling

Situational Awareness of the Environment

Guidance, Navigation & Control

System Health & State Management

Less Autonomy

Limited to a few functions
Functions are optional
Limited decision options
Environment well-characterized and understood
Models manually updated

Operators closely supervise execution

More Autonomy

All functions are autonomous
Function are critical
Wide decision space
Unknown/unpredictable environment
Learns and adapts
Lights out operations

More Autonomy

Layers and Spectrum of Task & Resource Planning & Scheduling

System Health & State Management

Guidance, Navigation & Control

Situational Awareness of the Environment

Task & Resource Planning & Scheduling

Intent Recognition and Management

Less Autonomy

Limited to a few functions Functions are optional Limited decision options Environment well-characterized and understood Models manually updated Operators closely supervise execution

All functions are autonomous Function are critical Wide decision space *Unknown/unpredictable environment* Learns and adapts *Lights out operations*

Based on timing

Based on predicted conditions

Based on short term predictions

Based on a single objective

Based on long term predictions

Based on learning from the past

Based on multiple objectives

Lower Level

Mapping Autonomy Capabilities to Technologies

Capabilities

System Health & State Management

Guidance, Navigation & Control

Situational Awareness of the Environment

Task & Resource Planning & Scheduling

Intent Recognition and Management

Technologies

Estimation & Control

Vision

Constraint Checking

Machine Learning

Motion & Path Planning

Technologies for System Health & State Management

Capabilities

System Health & State Management

- State estimation and monitoring
- Knowledge/model-building
- Anomaly detection
- Execution and control
- Diagnosis and prognosis
- Fault response

& Scheduling

Intent Recognition and Management

Technologies

Estimation & Control

Vision

Constraint Checking

Machine Learning

Motion & Path Planning

Technologies for Guidance, Navigation & Control

Capabilities

System Health & State Management

Guidance, Navigation & Control

- Hazard assessment
- OpNav
- Mobility and motion planning
- Manipulation
- Autonomous rendezvous and docking

Learning and adapting

Technologies

Estimation & Control

Vision

Constraint Checking

Machine Learning

Motion & Path Planning

Technologies for Science & Data Analytics

Capabilities

- Sensing and perception
- Hazard Assessment

Situational Awareness of the Environment

Task & Resource Planning & Scheduling

Intent Recognition and Management

Technologies

Estimation & Control

Vision

Constraint Checking

Machine Learning

Motion & Path Planning

Technologies for Task & Resource Planning & Scheduling

Capabilities

- Event/trend identification
- Mission planning
- Activity and resource planning
- Learning and adapting

Situational Awareness of the Environment

Task & Resource Planning & Scheduling

Intent Recognition and Management

Technologies

Estimation & Control

Vision

Constraint Checking

Machine Learning

Motion & Path Planning

Technologies for Intent Recognition

Capabilities

System Health & State Management

Guidance, Navigation &

Control

- Knowledge and Intent Conveyance and Understanding
- Prediction of Agents' Behavior
- Goal and Task Negotiation
- Operational Trust

Intent Recognition and Management

Technologies

Estimation & Control

Vision

Constraint Checking

Machine Learning

Motion & Path Planning

Computing Needs from Autonomy Technology Perspective

Capabilities

Estimation & Control

System Health & State Management

Guidance, Navigation & Control

Situational Awareness of the Environment

Task & Resource Planning & Scheduling

Intent Recognition and Management

Vision

Technologies

Constraint Checking

Machine Learning

Motion & Path Planning

Computing Metrics

- Processing Speed
 - Limits the computation speed (e.g. Clock speed and MIPS)
- Memory Size
 - Limits the size of the autonomy software
- Memory Access Rate
 - Potentially limits the computation speed (e.g. depending on the use of L1/L2/L3/L4 Cache and Memory Bus)
- I/O Access Rate
 - Limits the access speed in reading from or writing to peripheral devices
- Number of Cores
 - Limits parallel processing

- Processor Speed
 - Limits the planning horizon
 - Limits searching more options
 - Limits plan and execution response time
- Memory Size
 - Limits the planning horizon
- Memory Access Rate
 - Limits plan and execution response time
- Number of Core
 - Limits searching more options
- I/O Access Rate
 - Limits check pointing and logging

Autonomous Science Experiment (ASE) on Earth Observing-1 (EO-1)

Processor: MIPS R3000 Mongoose-V

- 32bit processor
- 12 MHz
- Processor Speed
 - 4 MIPS shared among SCL, CASPER, and image processing
 - Each CASPER run take 10 minutes
- Memory Size
 - 40 MB RAM of 256 MB total allocated to CASPER
- Memory Access Rate
- Number of Core
 - Single
- I/O Access Rate
 - CASPER was allocated 1MB of filespace
 - 248 bytes of data in its telemetry packet

D. Tran, S. Chien, G. Rabideau, B. Cichy. Flight Software Issues in Onboard Automated Planning: Lessons Learned on EO-1. International Workshop on Planning and Scheduling for Space(IWPSS 2004). Darmstadt, Germany. June 2004

Estimation and Control

- Processor Speed
 - Limits estimation and control computation time (e.g. matrix operations)
- Memory Size
 - Minimal impact
- Memory Access Rate
 - Limits estimation and control computation time
- Number of Core
 - Limits parallel estimation and control computation (e.g. matrix operations)
- I/O Access Rate
 - Limits the time to read from sensors and manipulate actuators

Vision

- Processor Speed
 - Limits vision computation speed (e.g. large matrix operations)
- Memory Size
 - Limits the memory available for vision computation
- Memory Access Rate
 - Limits vision computation speed (e.g. large matrix read/write)
- Number of Core
 - Limits parallel vision computation (e.g. matrix operations)
- I/O Access Rate
 - Limits response time in reading images from external devices

Constraint Checking

- Processor Speed
 - Limits constraint propagation and search speed
- Memory Size
 - Limits search state space
- Memory Access Rate
 - Limits constraint propagation and search tree tracking speed
- Number of Core
 - Limits parallel state space search
- I/O Access Rate
 - Minimal impact

Machine Learning

- Processor Speed
 - Limits learning computation speed (e.g. matrix operations)
- Memory Size
 - Limits the complexity of the learning capability
 - Limits the number of training data in memory
- Memory Access Rate
 - Limits learning computation speed (e.g. matrix operations)
- Number of Core
 - Limits parallel computation (e.g. large matrix operations)
- I/O Access Rate
 - Limits training data read speed

Motion and Path Planning

- Processor Speed
 - Limits the path planning horizon
 - Limits searching more options
 - Limits plan and execution response time
- Memory Size
 - Limits the planning horizon
- Memory Access Rate
 - Limits plan and execution response time
- Number of Core
 - Limits searching more options
- I/O Access Rate
 - Limits the speed of reading from sensors

Summary of Autonomy Computational Needs

Acknowledgements

- The following documents were used as references
 - NASA 2015 OCT Roadmaps, TA 4: Robotics and Autonomous System
 - NASA 2016 Autonomous Systems Capabilities Leadership Team's Definition, Scope and Decomposition of Autonomy

Backup

